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• Introduction and motivation
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Breeding NNs with HPC – Presentation Overview

https://en.wikipedia.org/wiki/File:Carrots_of_many_colors.jpg
https://en.wikipedia.org/wiki/File:RightBrainMicroprocessor.jpg
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• Introduction and motivation

• High-level overview of artificial neural networks

• Perceptron as a model of a neuron

• Connected perceptrons as a model of a brain

• Backpropagation as a model of learning
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Breeding NNs with HPC – Presentation Overview

𝒚 = 𝒎𝒙 + 𝒃

https://upload.wikimedia.org/wikipedia/commons/3/3a/
Linear_regression.svg
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Breeding NNs with HPC – Presentation Overview

?
Choose

Hyperparameters 

https://www.flickr.com/photos/bfishadow/4407860229
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• Introduction and motivation

• High-level overview of artificial neural networks

• Perceptron as a model of a neuron

• Connected perceptrons as a model of a brain

• Backpropagation as a model of learning

• Explanation of hyperparameter optimization

• grid search, random search, genetic algorithms

• Bayesian approaches, reinforcement learning, etc.
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Breeding NNs with HPC – Presentation Overview
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Breeding NNs with HPC – Presentation Overview

Breeding

Artificial Brains
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“
“

THE FUTURE 

IS SELDOM 

THE SAME AS 

THE PAST.

SEYMOUR CRAY
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Breeding NNs with HPC – Superhuman
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Breeding NNs with HPC – Cross-Industry
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Neural  Network 
Introduct ion

10
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• Perceptron as a model for a neuron (Frank Rosenblatt, 1957)
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ANN Overview – Perceptron Model – Neuron

https://commons.wikimedia.org/wiki/File:Neuron.svg
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• Information flows in dendrites, is processed in the nucleus, flows out axon.
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ANN Overview – Perceptron Model – Info Flow 

https://commons.wikimedia.org/wiki/File:Neuron.svg
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• Information flows in dendrites, is processed in the nucleus, flows out axon.
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ANN Overview – Perceptron Model – Info Flow 

https://commons.wikimedia.org/wiki/File:Neuron.svg

𝑓(෍𝑥𝑤)
𝑤𝑖

𝑥𝑖

𝑦 = 𝑓(∑𝑥𝑤)



© 2019 Cray Inc.

• Linear model wrapped by a non-linear function:

• 𝒚 = 𝒇(𝒘𝒙 + 𝒃)
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ANN Overview – Perceptron Model – Linear Model 

https://en.wikipedia.org/wiki/Activation_function

𝑓(෍𝑥𝑤)
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𝑏 = (𝑥0 = 1) ∗ 𝑤0
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ANN Overview – Deep Neural Networks

https://commons.wikimedia.org/wiki/File:Neural_netw
ork_bottleneck_achitecture.svg
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ANN Overview – Convolutional Neural Networks

https://towardsdatascience.com/applied-deep-learning-part-4-
convolutional-neural-networks-584bc134c1e2

weights 𝑤𝑖
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ANN Overview – CNN Filters Visualized

http://web.eecs.umich.edu/~honglak/icml09-
ConvolutionalDeepBeliefNetworks.pdf
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ANN Overview – CNN Architecture

https://arxiv.org/abs/1711.03573
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ANN Overview – Backpropagation

http://www.telesens.co/loss-landscape-viz/viewer.html
https://arxiv.org/pdf/1712.09913.pdf

• Find partial derivative of error 
with respect to each weight 
(chain-rule):

• Challenge to compute, 
synchronize 𝛻𝑤𝑖𝑗 across 
compute elements

• Stochastic gradient descent 
(SGD) with mini-batch at a 
time

𝛻𝑤𝑖𝑗 = −𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗

Resnet-56
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ANN Overview – Parameter Optimization

http://www.telesens.co/loss-landscape-viz/viewer.html
https://arxiv.org/pdf/1712.09913.pdf

Resnet-56 (no skip)
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Hyperparameter 
Optimizat ion

21
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NN HPO – Basic Grid Search

• Simple

• Easily parallelizable

• Curse of dimensionality

• Computation expense
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NN HPO – Iterative Grid Search

• Simple

• Easily parallelizable

• Curse of dimensionality

• Computation expense
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NN HPO – Iterative Grid Search with FoM Surface

H
P

_
1

HP_2

FoM



© 2019 Cray Inc.

• Think of a GA on HPO as:

• “Automatic, iterative, stochastic grid search with pruning”

• Inspired by biological systems found in nature:

• Mutation

• Crossover

• Selection

25

NN HPO – Genetic Algorithms

http://www.aaronvose.net/cich.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-5646.2009.00756.x
http://www.aaronvose.net/palms.pdf
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NN HPO – Genetic Algorithm Generation Cycle

Evaluate

Founder

Mutation

Selection

Reproduce

Next Gen

Create initial population 

around default HPs.

Choose pair of 

parent NNs.

Train and get NNs’ 

accuracy.

Create child from parents 

with crossover and mutation.

Kill old population; 

children “grow up”.
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Evaluate

NN HPO – HPO with GAs: Founder

27

Initial HPs

Founder

Mutation

Selection

Reproduce

Next Gen

© 2019 Cray Inc.
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NN HPO – HPO with GAs: Initial Mutation
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Evaluate

Founder

Mutation

Selection

Reproduce

Next Gen

Mutated HPs

© 2019 Cray Inc.
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NN HPO – HPO with GAs: Evaluate Fitness 1
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Founder
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Selection

Reproduce

Next Gen
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NN HPO – HPO with GAs: Mate Selection 1

30

Parent A

Parent B

Evaluate

Founder

Mutation

Selection

Reproduce

Next Gen

© 2019 Cray Inc.
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NN HPO – HPO with GAs: Reproduction 1

31

Child C1

Evaluate

Founder

Mutation

Selection

Reproduce

Next Gen
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NN HPO – HPO with GAs: Mate Selection 2
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Parent A
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Founder
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Reproduce

Next Gen
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NN HPO – HPO with GAs: Reproduction 2
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Child C2

Evaluate

Founder

Mutation

Selection

Reproduce

Next Gen
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NN HPO – HPO with GAs: Mate Selection 3
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NN HPO – HPO with GAs: Reproduction 3
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Child C3
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Founder
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Next Gen
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NN HPO – HPO with GAs: Reproduction N
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NN HPO – HPO with GAs: Next Generation
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NN HPO – HPO with GAs: Evaluate Fitness 2
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NN HPO – HPO with GAs: Evaluate Fitness 1
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NN HPO – HPO with GAs: Evaluate Fitness 2
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NN HPO – HPO with GAs: Evaluate Fitness N
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Next Gen
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NN HPO – HPO with GAs: Math

42

Evaluate

Founder

Mutation

Selection

Reproduce

Next Gen
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Put I t  Al l  
Together

43
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NN HPO – Population-Based Training

https://arxiv.org/pdf/1901.03900.pdf
https://arxiv.org/pdf/1711.09846.pdf

• Population-based training 
(PBT): interleave SGD and 
GA-based HPO:

• Train all NNs in 
population for one epoch.

• Save NN model weights 
and note accuracy for 
fitness.

• Treat NN weights as a 
gene in the GA during 
reproduction.
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NN HPO – PBT Provides HP Training Schedule

https://arxiv.org/pdf/1901.03900.pdf
https://arxiv.org/pdf/1711.09846.pdf
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NN HPO – Population-Based Training Results

https://arxiv.org/pdf/1901.03900.pdf
^https://arxiv.org/pdf/1512.03385.pdf

Model w/ 
CIFAR10

Size
(MParam)

Implementation

Accuracy

Original 

Paper^

ResNet-20 

(HPO:PBT)

0.27 93.00% --

ResNet-20 0.27 92.16% 91.25%

ResNet-32 0.46 92.46% 92.49%

ResNet-44 0.66 92.50% 92.83%

ResNet-56 0.85 92.71% 93.03%

ResNet-110 1.70 92.65% 93.39%



© 2019 Cray Inc. 47

NN HPO – HPO Results

https://arxiv.org/pdf/1901.03900.pdf
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Q U E S T I O N S ?

avose@cray.com
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S A F E  H A R B O R  
S TAT E M E N T

This presentation may contain forward-looking 
statements that are based on our current 
expectations. Forward looking statements may 
include statements about our financial 
guidance and expected operating results, our 
opportunities and future potential, our product 
development and new product introduction 
plans, our ability to expand and penetrate our 
addressable markets and other statements that 
are not historical facts.

These statements are only predictions and 
actual results may materially vary from those 
projected. Please refer to Cray's documents 
filed with the SEC from time to time concerning 
factors that could affect the Company and 
these forward-looking statements. 
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